and OUP \checkmark Orage 600k 9 304 Following \checkmark Choc \bigcirc Scotty Tilton UCSD 2, aij × yi i,i70 R .0__ Cp∞

Definition
Let
$$M_1, M_2$$
 be smooth n-manifolds
and $f_1: M_1 \longrightarrow X$ be continuars maps
 $f_2: M_2 \longrightarrow X$ be continuars maps
These maps are bordant if
- then exists a smooth, compared manifold W
with $\partial W = M_1 \sqcup M_2$
- and $f: W \longrightarrow X$ Such that
 $f|_{M_1} = f_1$ for $i = l_1 2$.
We call f a bordism between f_1 , f_2 .

 $\frac{Picrue}{M_1 = 0} \qquad M_2 = 0 \qquad 0$ W =Fact Bordismis an eaviralence relation and the set of bordism classes form a grap under U. $[M_1] + [M_2] = [M_1 \sqcup M_2]$ $[M,] + [M,] = [O(M, \times I)] = O = [\varphi]$ Note: A manifold is <u>Stably complex</u> if it admits a complex linear structure in its stable normal bundle (weaken than complex analytic) Definition MUn(X), the n-th complex bordism grap of X is the bordism group where you require all manifolds to be study complex. Lemarths · MUX (-) satisfy the E-S axions (exceptions.m) · Wedenvic MU* := MU* (pt) the grap of Ordison clases of Stably Complex man. folds. · Graded under "x"

Theorem 3.1.3 $MU_* \cong \mathbb{Z}[X_1, X_2, \dots]$ when $din X_i = 2i$

Remarks) • Cpi form polynomial gener ators for
Q & MU*
• MU*(X) is an MU* module.

$$\lambda \in MU*$$
 repid manifold N
 $X \in MU*$ (X) repid f: M = X
 λX . is repid by NXM = M + X
 λX . is repid by NXM = M + X
We have MU-theory non

Definition A for nul group (an over
a commutative ring with identity R is a
- poner series
$$F(x,y)$$
 over R
S at is fying
• (I dentity) $F(x,0) = F(0,x) = x$
• (commutativity) $F(x,y) = F(y,x)$
• (Asso ciativity) $F(F(x,y),z) = F(x,F(y,z))$
Remarkt.• existence of inverses is free with these
i(x) is determined $F(x, i(x)) = 0$
• related to a firmal group law F is a
log $F(F(x,y)) = log F(x) t log F(y)$

Examples]

• Additive formal group law

$$F(x,y) = x + y$$
 $\log_F(x) = x$
• Multiplicative formal group law
 $F(x,y) = x + y + xy$ $\log_F(x) = \log(1+x)$
 $= (1+x)(1+y) - 1$

· For more: take the power series of the produce map at the identity of a Lie goup or a belian variety

Lazard's Theorem (Universe Formal) There is a firmed group law

$$G(x_{i}y) = \sum_{i,j}^{r} a_{ij}x^{i}y^{j}$$
 over a ving L
called the Lazard ving Such that
for any formal group law $F(x_{i}y)$ and ving R,
then there exists a unique ving homomorphism
 $\theta: L \longrightarrow R$ such that
 $F(x_{i}y) = \sum_{i=1}^{r} \theta(a_{ij}) x^{i}y^{j}$
• L is a polynomial algebra $Z(x_{i}, y_{ij}, \dots, y_{ij})$
where if we put a grading on L so there
 $deg(a_{ij}) = Z - Zi - 2j$ makes $deg(x_{i}) = -2i$

$$Mu^{4} (\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) \stackrel{f^{*}}{\leftarrow} Mu^{*} (\mathbb{C}P^{\infty})$$
this is deterned on $f^{*}(x) = F(x \otimes l_{1} | \otimes x)$ which
is a final grap law so by Lazard's
 $\exists | \Theta: \bot \rightarrow MU^{*}.$
Quillen's Theorem
The map $\Theta: \bot \rightarrow MU^{*}$ is an isomorphism!
Nemath · I gnoring grading, we can think of
 $MU_{*}(x)$ as an $\bot module$ size $MU_{*}^{\Xi}MU_{*}^{\Xi}$
· The formal group law assoc. to complex cosordism is
 $Unimest_{*}$
Move Move Move!
Defn Let $\Gamma = \{x + b_{1}x^{2} + b_{2}x^{3} + \cdots \in Z(I \times J)\}$
with composition o

$$\bigcap \mathcal{N}_{L}$$
 like so:
For $\mathcal{X} \in \bigcap$ and $\mathcal{G}(x,y)$ the Unitersal formal graphical
 $\mathcal{X}^{-1}\mathcal{G}(\mathcal{X}(x), \mathcal{J}(y))$ is another formal graphical over
 L , so $\exists : \Theta_{g} : L \to L$ and since \mathcal{X} is invertible
 Θ_{g} is an average phison

r

De finition (

Y

$$\begin{bmatrix} n \end{bmatrix} (x) \equiv hx \mod x^2 \\ \begin{bmatrix} mtn \end{bmatrix} (x) \equiv F(\ln 2(x), \ln 3(x)) \\ \begin{bmatrix} mn \end{bmatrix} (x) \equiv [mn] (\ln 2(x)) \\ \begin{bmatrix} mn \end{bmatrix} (x) \equiv [mn] (\ln 2(x)) \\ \end{bmatrix}$$

Defh Lee
$$F(x,y)$$
 se a formal group law own
a ring when the prime p is not a unit.
We say F has here h at P if
the p-series
 $[p](x) \equiv 0 x^{p}$ t (higher terms) mod p .
with a invertible

Exi

$$F(x,y) = x+y$$
Additive
Firmal
Frank
F(x,y) has height (D) since
[p] (x) = px = 0 mod p

$$F(x,y) = x+y + xy$$
Multiplicative
F(x,y) has height | since
F(x,y) has height | since
[p] (x) = (x+1)^{p} - 1 = x^{p^{1}} mod p

Classification of Formal Grap laws (Lazard)
Two formal group laws over the algebraic
closure of Fp are
isomorphic
$$\iff$$
 they have the same here he.
Let p be prime and let's think above the
universal formal group law $G(x,y)$ in
Let V_{n} be the coefficient of χ^{p} in the series
 $Lp(x) = G(x, Lp \cdot (J(x)))$

Let
$$I_{p,n} \subset L$$
 be the ideal $(p, V_{1,2}, \dots, V_{n-1})$
Invariant Prine Ideal Theorem (Mora Va, Landneber)
The only prime ideals in L that are invariant
under Γ are $I_{p,n}$ where p is prime
and $n \geq 0$

Moreover, in Lip, for 1070, the 516 grap fixed by [is Z/pz [Vn] In L, the invariant subgroup is Z.

$$L = Z(\Sigma_{x_1}, X_{x_2}, \dots)$$
 has creatly prime ideals but
these restrictions let us norry above for
ferrer in $C\Gamma$.

Once we localize at , the only polynomial generators of
$$ane$$
 the $V_n = since$ others act freely.

There is no if we tensor them analy,
we can study

$$V_p :=$$
 with a $\int -action$
is shown

in stead.

T II: Acti

Falling Action Corollary Lee M be a p-local module and $X \in M$. i) If $V_n^{-1}M = 0$, then ii) If $x \neq 0$, then there is so that for all K. i.e M non-trivial \Rightarrow iii) If $V_{n-1}^{-1}M=0$, then so these nultiplication by commutes with

iv) If $V_{n-1}^{-1} M \neq 0$, then so that commutes with

3.4 will be covered by Chang in 2 neeks. Next week I'll talk above

4. Morava's Orbit Picture and Morava's Stabilizer Groups,

