srl

Picture

$$
\begin{aligned}
& M_{1}=O \quad M_{2}=00 \\
& W=\square \vdots
\end{aligned}
$$

Fact Bordism is an equiv alence relarion and the sel of bardism classes form a grap under $L_{\text {. }}$

$$
\begin{aligned}
& {\left[M_{1}\right]+\left[\mu_{2}\right]=\left[M_{1} \sqcup \mu_{2}\right]} \\
& {\left[M_{1}\right]+\left[M_{1}\right]=\left[\partial\left(M_{1} \times I\right)\right]=0=[\phi]}
\end{aligned}
$$

Noec: A manitold is Stably compley if it admits a complex linar strucere in its stable nornal bundle (wealew than conplex analytie)
(a) De finition $M U_{n}(x)$, the nth complex bordism grap of X is
the bordism group wher you requix all maniblols to be stably complex.
Remashs . $M U_{*}(-)$ samisty the $E-S$ axions (exceradiansen)

- We denure $M U_{*}:=M U_{*}(p t)$ the grap of sordisms classs of stably complex manisdols.
- Graded under "x"

Theoren 3.1.3 $M U_{*} \cong \mathbb{Z}\left[x_{1}, x_{2}, \ldots ..\right]$ when $\operatorname{din} x_{i}=2 i$

Remarl(s) - $\mathbb{C} P^{i}$ form polynomal gener ators for $\mathbb{Q} \otimes M U_{*}$

- $M U_{*}(X)$ is an $M U_{*}$ module.
$\lambda \in M U_{*}$ rep'd manifold N
$x \in M a_{*}(x)$ reid $f: M \rightarrow X$
λx is up ${ }^{\prime} d$ by $N \times M \longrightarrow M \xrightarrow{t} X$
We have MU-theory now

Definition A for $n_{n} 1$ group | aw over
a commutatic rmg with identity R is a

- poner series $F(x, y)$ over R
s atis fying
- (Identity) $F(x, 0)=F(0, x)=x$
- (commutat, ity) $F(x, y)=F(y, x)$
- (Associatinty) $F(F(x, y), z)=F(x, F(y, z)$

Remarlh \int - existence of inverss is free with these \uparrow $i(x)$ is dereumined $F(x, i(x))=0$

- related to a formal grave law F is a $\operatorname{logavithm~}^{\log _{F}}$ so thate
(1) notin

$$
\log _{F}(F(x, y))=\log _{F}(x)+\log _{F}(y)
$$

Examples]

- Additive formal group law

$$
F(x, y)=x+y \quad \log _{F}(x)=x
$$

- Mu tiplicative formal group law

$$
\begin{aligned}
F(x, y) & =x+y+x y \quad \log _{F}(x)=\log (1+x) \\
& =(1+x)(1+y)-1
\end{aligned}
$$

- For move: take the pour serif's if the produce map as the identity of a lie goop or abelian variety
 $G(x, y)=\sum_{i, j} a_{i j} x^{i} y^{j} \quad$ over a ring L
called telazard ring such tho
for amy formal grep law $F(x, y)$ waring R, then there exists a unique ring homomorphism $\theta: L \longrightarrow R$ such that

$$
F(x, y)=\sum_{i, j} \theta\left(a_{i j}\right) x^{i} y^{j}
$$

- L is a polynomial a libia $\mathbb{Z}\left[x_{i, j}, x_{2}, \ldots . ..\right]$ when, if we pen gradin, in L so thee $\operatorname{deg}\left(a_{i j}\right)=2-2 i-2 j$ makes $\operatorname{deg}\left(x_{i}\right)=-2 i$

How are these rel ated？
Det Associaled to MU＊isn cohondery theory MU＇
Geonetrically）X an m－manifold．
$[f] \in M a^{k}(x)$ is repusened 6y a function $f: N \rightarrow x$ where N is an $m-K$－manifold that sotisties sone things．
by a hermic toprony $M U_{*}(p t) \cong M U^{*}(o t) w /$ memer．
Nile Fact）．$M u^{*}(X)$ has cop produes（sini（aveo H^{*} ） so its a s－ated algerm oor mu＊．

$$
\begin{aligned}
& \text { - } \left.M u^{*}\left(c p^{\infty}\right) \cong M u^{*}[x]\right] \text { dim } x=2 \\
& \cdot M u^{*}\left(\mathbb{C} p^{\infty} \times\left(p^{\infty}\right) \cong M u^{*} \mathbb{C} \times 1,1 \otimes x\right]
\end{aligned}
$$

\＃しゃt。
－ $\mathbb{C} P^{\infty}$ is an abelian topdogial group homotary $\left(K(2,2) . B \mathbb{C}=S^{\prime}\right.$ is a $K(2,1)$

$$
\begin{aligned}
& B \mathbb{Z}=S^{\prime} \text { is a } K(\mathbb{Z}, 1) \\
& B S^{\prime} \text { is } \cap(\mathbb{K}, 2) ; \cdots+\left(1, k, p^{\circ}\right)
\end{aligned}
$$

whenamultiolication $\mathbb{C} P^{\infty} \times \mathbb{U}^{\infty} \xrightarrow{f} \mathbb{C} P^{\infty}$

$$
M a^{4}\left(\mathbb{C} p^{\infty} \times \mathbb{C} \rho^{\infty}\right) \longleftarrow f^{*} M u^{*}\left(\mathbb{C} p^{\infty}\right)
$$

this is doreraned on $f^{*}(x)=F(x \otimes 1,1 \otimes x)$ which\} ~
is a formal group law so by Lazard's
$\exists \theta: L \rightarrow M U^{*}$.
Quillen's Theorem
The map $\theta: L \rightarrow M U^{*}$ is an isomorphism!
Remand. Ignoring grading, we can think of $M C_{*}(x)$ as an L-module $\sin M U_{*} \cong \mu n^{*}$

- The formal group lav assoc. To complex cosordism animus Unions? 1 -

More More More!
Def ${ }^{n}$ Let $\Gamma=\left\{x+b_{1} x^{2}+\delta_{2} x^{3}+\cdots \in \mathbb{Z}[x]\right\}$ with composition 0
$\Gamma \curvearrowright L$ like so:
For $\gamma \in \Gamma$ and $G(x, y)$ tue uniuesul formal graplan, $\gamma^{-1} G(\gamma(x), \gamma(y))$ is another formal gnaplaw over $L, s_{0} \exists^{\prime} \cdot \theta_{\gamma}: L \rightarrow L$ and since γ is incurtiole θ_{γ} is an avermar phises

Definition (

- Let CP denote the category of finitely presented l-modules with a Γ-action compar de with oars
- Let JH denote the caregoy of finite $C W$ complexes and homotory classes of maps between them.

Remark) We can regard $\overline{M U^{*}}$ as a functor $\bar{\sigma} \rightarrow \boldsymbol{\mathrm { H }}$

Definition) Let F be a formal group law.

$$
\begin{array}{ll}
\text { et } & {[1](x):=x} \\
& {[n](x):=F(x,[n-1](x))} \\
\text { and } & {[-n](x)=i([n](x))}
\end{array}
$$

these one the n-series of F.
Thy Satisfy

$$
\begin{aligned}
{[n](x) } & \equiv n x \bmod x^{2} \\
{[m+n](x) } & =F(\operatorname{con})(x),[n](x)) \\
{[m n](x) } & =[m\rangle([n](x))
\end{aligned}
$$

Deft] Lee $F(x, y)$ re a formal group law our a ring whee the ping p is not unit. We say F has height h at P if the p-series

$$
[p](x) \equiv a x^{p^{h}}+(\text { higher terms }) \bmod p \text {. }
$$

wits a invertible
If $[p](x) \equiv 0$ nod p thant has height ∞ ore p.

Ex.

$$
F(x, y)=x+y
$$

Additive $F(x, y)$ has height $O D$ since
Formal
Ghaplaw $[p](x)=p_{x} \equiv 0 \bmod p$

$$
F(x, y)=x+y+x y
$$

Multiplicative Formal Grad $F(x, y)$ has height 1 since Law

$$
[p](x)=(x+1)^{p}-1 \equiv x^{p^{1}} \bmod p
$$

Classification of Formal Crap laws) (hazard) Two formal group laws over the algebraic closure of \mathbb{F}_{p} are
isomorphic \Leftrightarrow they have the sane here he,
Let p be prince, and let's think above the universal formal grasp law $G(x, y)$
Lee V_{n} be the coefficient of $x^{p^{n}}$ indre series

$$
[p](y)=G(x,[p \cdot(](x))
$$

Let $I_{p, n} \subset L$ be the ideal $\left(p, v, \ldots v_{n-1}\right)$
Invariam Prime Ideal Therm) (MoraVA, Landueber) The only prime ideals in L that are invariant under Γ are Ipin whom p is priv and $n \geq 0$

Moreover, in $L I_{p, n}$ in $n>0$, the subgrap fixed by Γ is $\mathbb{H} / p \mathbb{y}\left[v_{n}\right]$ In L, the incaviart subgroup is \mathbb{Z}.
$L=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ has crazy prime idols blt these restrictions let us horny about for fewer in $C \Gamma$.

Landweber Filtration Theorem Every module
$M \in \mathscr{\text { admits a finite filtration by }}$ sibmodules in $\mathcal{\Gamma}$

$$
0=F_{0} M \subset F_{1} M \subset \cdots \subset F_{n} M=M
$$

whore for each, $F_{i} M / F_{i-1} M^{2}=L / I_{p, n}$ for sone p and finite n.

Once ne localize as generators of am e the $V_{n}=$ since others act freely.

Thais, so if we tensor then away, we lan study

$$
V_{p}:=
$$ with $a\lceil$-acis

instead.
is Getter for tonlony, formiguaplows, compredinrs, eft.

Falling ixion
Corollary Lee M sea p-local module and $x \in M$.
i) If $v_{n}^{-1} M=0$, then
ii) If $x \neq 0$, then the is
so that for all K.
ie
M nontrivial \Rightarrow
iii) If $V_{n-1}^{-1} M=0$, then so that nultiplicationsy commutes with
$i v)$ If $v_{n-1}^{-1} M \neq 0$, then s_{0} that commutes with

Definition: A p-loeal module in UГ has if n is the sumllestintager with

- A homo movphiser
$f: \Sigma^{d} M \rightarrow M$ in $と \Gamma$ is a if it induces:
- an isomorphism in
- trivial honomophisin in

Corollary] If M in $\ell \Gamma$ is a p-local module mush $V_{n}^{-1} M \neq 0$, then
3.4 will be covwed by chang in 2 meeks. Next week I'll thlk asoue
4. Morava's Orsit Picture and Mova va's Stabilizer Graps,

